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ABSTRACT 

Klebsiella pneumoniae is accountable for a widespread range of infections such as pneumonia, urinary tract 

infections, liver abscesses and bacteremia. In addition to susceptible clinical isolates involved in multidrug-

resistant (MDR), nosocomial infections and hypervirulent (hvKP) strains have evolved separately in distinct 

clonal groups. These isolates are spread in various geographical regions globally. However, the virulence of K. 

pneumoniae is still unknown but the virulence of hvKP is beginning to revealed. The antimicrobial resistance is 

creating threatened for the treatment of K. pneumoniae. The antimicrobial resistance is usually associated with 

genetic mobile elements such as plasmids having virulence determinants. A proficient pathogen should be 

virulent, resistant to antibiotics, and epidemic. However, the interplay between resistance and virulence is poorly 

understood. Here, we review current knowledge on the topic. 
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INTRODUCTION 

Pneumonia caused by Klebsiella pneumoniae is the 

contributing mediator of a diversity of diseases, 

containing soft tissue infections, urinary tract, 

pneumonia and bacteremia. In developing countries, 

K. pneumoniae has become an opportunistic 

pathogen accountable for many nosocomial 

infections [1]. Nevertheless. A unique syndrome of 

community-acquired invasive disease caused 

pyogenic liver abscesses has been initiated [2]. This 

disease mostly reported in Asia, but few cases have 

also been seen globally [3]. The isolates belong to 

hypervirulent (hvKP) mostly serotypes K1 and K2 

caused these infections. A particular clone like 

clonal complex 23 (CC23) belonged to Serotype K1 

than ST23 and ST57 [4]. Many sequence types 

(STs), are belong to Serotype K2, and few are 

associated with hypervirulence such as ST380, 

ST375 and ST86. The isolates associated with ST65, 

ST57 and ST375 caused invasive infections [5]. In 

competition, isolated associated with K. 

pneumoniae have attained antimicrobial resistance. 

For instance, the rates of extensively drug-resistant 

(XDR), pandrug-resistant (PDR), multidrug-

resistant (MDR) isolates were 22 %, 61.4 % and 1.8 

% respectively reported in Beijing hospital, China 

from 2010 and 2011. Klebsiella pneumoniae has 

been becoming resistance to many antibiotics and 

this is a major problem to eradicate Klebsiella 

pneumoniae from different hospitals. Klebsiella 

pneumoniae belonged to ESKAPE group 

(Enterococcus faecium, Staphylococcus aureus, 

Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa, and Enterobacter 

species) caused infections in Us hospitals [7]. 

Mostly MDR isolated of K. pneumoniae produced 

extended-spectrum β-lactamases (ESBLs) and 

carbapenemases (KPC) in combination with 

aminoglycoside and quinolone resistance, belonged 

to many clones such as CC258 in contrast with 

ST11, CC14, ST258, CC15, ST340 and ST512 [5]. 

hypervirulent species and MDR are overlapping 

species for a long time but few cases have been 

reported recently [8]. The organisms producing 

ESBL were detected in Europe and then France. The 

Klebsiella belonged to ESBL ranged low in Sweden 

3% but 34% high in prevalence intensive care units 

(ICUs) in Portugal. About 6.1% isolates of K. 

pneumoniae in North America from ICUs showed 

resistance to third-generation cephalosporins. In 

South African hospital, K. pneumoniae produced 
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ESBL were 36.1% but the percentage is about 5% in 

Australian hospitals but 30-60% of Klebsiella were 

found in Colombia, Venezuela, Brazil. But the rate 

of ESBL producing K. pneumoniae low in Japan 5% 

than in Asia 20-50% [9]. The positive strains of 

KPC have spread internationally. In some countries 

such as Colombia, Israel and Greece cases are 

endemic but in other countries such as New Zealand, 

Australia and Canada, they are imported from other 

countries [10]. The K. pneumoniae virulence factors 

are lipopolysaccharides, capsule fimbriae and 

siderophores (salmochelin, enterobactin, 

yersiniabactin and aerobactin) and efflux.  

Some factors, such as fimbriae, capsule, 

enterobactins, and biofilm formation, are found in 

almost all isolates and seem to be at the origin of 

classical pathogenesis. A number of putative 

virulence factors have been associated with hvKP, 

while CC258 is almost entirely devoid of virulence 

genes. The strains of hvKP contained aerobactin and 

RmpA (a mucoid phenotype). Virulence plasmid 

encoded by this plasmid [11]. Besides, 

yersiniabactin (iron acquisition systems) encoded 

by conjugative and interrogative element (ICE) 

ICEKp1 [12] and allantoin metabolism regions 

associated with strains of hvKP [13].  the 

procurement of clusters of the siderophore of K. 

pneumoniae has elevated the risk of serious 

infections in humans [14]. K. pneumoniae can 

attained antimicrobial resistance by mutation in 

DNA or by horizontally gene transfer [15]. 

Nevertheless, acquirement of resistance against 

antibiotics transfer fitness cost. These reduces the 

inexpensive characteristic of bacteria in the 

nonappearance of antibiotics. Mutations and 

deletion in genes associated on chromosomes 

involved in antimicrobial resistance, initiates fitness 

cost. The acquisition in plasmid the cost is lower 

[16]. Plasmids play very important role in 

acquisition and dissemination of determinants cause 

resistance and virulence genes in  K. pneumoniae. 

Klebsiella pneumoniae showed permeability to 

plasmids. Mostly strains contained low-copy-

number and high-copy-number plasmid in their 

plasmids [17]. The relationship between virulence 

and resistance is a serious issue due to acquisition of 

virulence factors, antimicrobial resistance and 

phylogenetic background. K. pneumoniae has 

genomic diversity with gain and loss of genes due to 

lateral gene transfer like   Escherichia coli [15, 17]. 

The main purpose of the review is to discuss 

virulence and antimicrobial resistance in K. 

pneumoniae strains.  

RESISTANCE TO -LACTAMS 

Klebsiella pneumoniae is resistance to β-lactam ring 

containing broad spectrum antibiotics such as 

carbapenems, penicillins, monobactams, 

cephalosporins and β-lactamase inhibitors [18]. The 

main cause of getting resistance in Gram-negative 

bacteria is the β-lactamase enzymes production with 

the help of transpeptidases enzymes present in cell 

wall and excessive release of β-lactam containing 

molecules. Klebsiella pneumoniae adopt the 

mechanisms of getting resistance due to producing 

β-lactamase enzyme by efflux pump and changing 

the cell wall permeability [19].  

β-lactamase Expression and Virulence 

Association  

Extended Spectrum β-lactamases 

K. pneumoniae produced Extended Spectrum Beta 

Lactamase (ESBL) which are divided into following 

derivatives SHV, TEM and CTX. Active sites of 

ESBLs interchange their amino acids due to 

mutations in SHV and TEM genes present on 

plasmid. In 1983, it was reported form Germany that 

bacteria belong to Enterobacteriaceae family may 

also produce ESBLs [20]. Chromosome of 

Klebsiella pneumoniae produced SHV-1 β-

lactamase and become resistance to antibiotics 

carbenicillin and ampicillin. In 1980s, ESBL 

enzyme that breakdown the oxyimino-

cephalosporins was reported [21]. Mostly ESBLs 

are mediated by plasmid and play an importance 

role in hydrolyzing antibiotics. First, second, and 

third-generation cephalosporins, penicillins and 

aztreonam   resistance is increasing due to 

breakdown of antibiotics. Other enzymes β-

lactamase inhibitors stop the steady increasing 

resistance but cannot work against carbapenems and 

cefoxitin because their plasmids adopt other 

mechanisms for causing resistance to 

aminoglycosides, Fluoroquinolones and 

cotrimoxazole. In 1980s, TEM-2 and classic SHV-1 

genes were dominant in producing ESBLs due to 

genetic variants but CTX-M group is new ESBLs 

producing family in the beginning of the 1990. 

Nowadays CTX-M enzymes are leading ESBL type 

but K. pneumoniae contained CTX-M-15 enzyme 

presently observed [22]. 

Correlation with Adhesions 

Klebsiella pneumoniae contained fimbrial and 

nonfimbrial adhesins for colonization within 

mucosal tissues of human beings. These are 

extracellular appendages contained thousands of 

protein subunits. Mucosal surfaces are including 

gastrointestinal tract especially oropharynx where 

primary infection appear benign [23]. Fimbrial 

adhesins are KPF-28 encoded by plasmid, E. coli 

common pilus (ECP), mannose sensitive type 1 

fimbriae and type 3 fimbriae. While CF29K include 

in nonfimbial adhesins [24]. Klebsiella pneumoniae 

contained several virulence genes like uge, wabG, 
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ureA, mrkD, kfuBC, rpmA, fimH and there 

functions are encode enzyme uridine diphosphate 

galactouronate 4- epimerase, outer core 

lipopolysaccharide biosynthesis, relevant to urease 

operone, mucoviscosity associated gene A, 

adhesions with type 3 fimbriae, allantoin regulon 

activation, iron uptake system, mucoid phenotype 

regulation, and type 1 fimbial encoding gene 

respectively and are involved in pathogenesis [25].  

Other virulence factors produced by K. pneumoniae 

are lipopolysaccharides, siderophores, capsular 

polysaccharides, fimbriae and serum resistance [26, 

27]. The link between resistance to β-lactams due to 

production of ESBL and k. pneumoniae adhesions 

to cell surface were investigated from 1990 and 

2000 in several studies [28]. In 1965, the first β-

lactamase enzyme Temoneria (TEM-1) enzyme was 

discovered and soon (SHV)-1 sulphydryl variable β-

lactamase enzyme was described. Which showed 

resistance to penicillins and contained ESBLs [29]. 

At this time (TEM-1) (TEM-2), (SHV)-1 was more 

prominent in ESBLs. Since 1984 study in France, 

ESBLs producing bacteria belong to family 

Enterobacteriaceae contained enzymes TEM (TEM-

3, TEM-5, TEM-8, TEM16, TEM-24) or SHV-1 

(SHV-4). TEM derivatives are encoded by genes 

present on 85-Kb R-plasmid while SHV derivatives 

are present on 185-Kb plasmid [30]. CF29K 

nonfimbrial proteins present in CC23clone (80%) 

and able to cause pyogenic liver diseases it might be 

caused by other virulence factor present on same 

plasmid [31].  Besides TEM and SHV, CTX-M 

showed greater activity to cefotaxime than 

ceftazidime. This plasmid is also responsible to 

other antibiotics such as trimethoprim, 

fluoroquinolones and aminoglycosides [32]. In the 

era between 1983-1991, 145 epidemic outbreak 

occur in which 13 outbreaks were caused by 

Klebsiella [33]. Centers for Disease Control and 

Prevention reported 3% epidemic and 8% endemic 

outbreaks were occurring by Klebsiella spp [34]. 

SHV-5 type of Klebsiella strains were commonly 

resistance to ceftazidime reported in Europe while 

in United States TEM-10 and TEM-12 were 

identified [35]. The study shown that SHV-4 β-

lactamase producing strains of K. pneumoniae were 

linked with restrict type of adhesion. Same study 

reported that 45% severe infections were caused by 

such localized adhesion isolates. As a result, 

pathogenesis could be caused by such isolates [36]. 

The antibiotic resistance of K. pneumoniae strains is 

associated mainly with the production of ESBL. In 

2017 the World Health Organization included 

ESBL-producing K. pneumoniae in the list of the 

most dangerous superbugs along 

with Acinetobacter baumani and Pseudomonas 

aeruguinosa [37].   

Correlation with Capsule Production 

Both classical and hypervirulent capsule of 

klebsiella pneumoniae are made up of K antigens 

(K1 and K2, upto 78) which is capsular 

polysaccharide and specific for strains [38]. The 

capsule producing genes are present on 

chromosomal operons cps. The cps is the cluster of 

genes including wzb, wca, cpsG, wzi, wzc, cpsB, wzb 

and galF involved in capsule production [39].  

wzi locus is sequenced by K-antigen typing because 

it contained genes which encode protein that is 

involved in attachment of capsule with outer 

membrane. If this protein is not present results in 

absence of capsule [40]. Wzy also called orf4 and its 

function is to polymerize capsular polysaccharide 

and wza, wzc also known as orf5, and orf6 worked 

as surface assembly. cpsG and cpsB and cps gene 

encode phosphomannomutase, mannose-1 

phosphate guanyltransferase and capsule 

polymerization respectively [41].   

TEM and SHV type ESBL producing strains of K. 

pneumoniae showed more serum resistance than 

non- ESBL-producing strains [42]. Capsule is a 

virulence factor and enhance ability to cause 

diseases because it prevents from phagocytosis. 

Capsule synthesis and serum resistance properties 

are correlate with each other.  Capsular strains are 

more linked to cause blood infections. On the 

contradictory, isolates producing CTX-M showed 

less serum resistance production in K. pneumoniae 

than non-ESBL-producing strains [43]. Two genes 

p-rmpA1 (mucoid phenotype) and gene p-magA2 

(having mucoviosity property) present on two large 

plasmids [44] and one is located on chromosome (c-

rmpA), involved in capsule production. These genes 

are present in hv-KP and less prevalence of 

antibiotics than c-KP strains. 12.6% hv-KP isolates 

produced ESBLs from invasive infections that was 

reported in china since 2016 [44]. HvKP contained 

p-rmpA instead of p-rmpA2 or c-rmpA when 

sequenced very first time and involved in enhancing 

genes to produce capsule. It is more hypervirulent 

[45]. A prevalent study conducted in 2016 

demonstrated that 12.6% isolates of hvKP isolated 

from infections that invade into body organs 

contained blaCTX−M genes and produced ESBLs. If 

plasmid is conjugated with blaCTX-M-15 gene, it 

showed more serum resistance and ultimately higher 

capsule production than unconjugated plasmid or 

original host. Isolates having CTX-M-producing 

genes and ST11 non-ESBL-producing strain 

showed similarity in serum resistance. Researchers 

suggested that, traT gene is conjugated into plasmid 

to attain the property of serum resistance. In another 
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study, isolates having virulence genes that produced 

ESBL TEM-47 or TEM-68 caused newborn 

infections [46]. 

Correlation with Non-virulence 

A study was conducted in 2000 at the teaching 

hospital of Clermont-Ferrand in France showed that 

CTX-M-15 produced by K. pneumoniea was 

involved in outbreak [47]. Most of the infections 

occur through anendo scope in which K. 

pneumoniea reside in the form of biofilm. Instead of 

the presence of virulent capsular serotype K2, K. 

pneumoniea contained some virulence genes but 

none of the patients were infected. This bacterium 

can survive in the hospital environment because it 

has the ability to plasmid transformation into 

another bacterium. Hence proved that, presence of 

capsule in not related to virulence. Another study 

demonstrated that K. pneumoniae strains 

specifically K1 serotype collected between 1917 

and 1949 also known as Murray collection showed 

little or no virulence [48]. 

Another outbreak of K. pneumoniae strain 

producing CTX-M-15 ESBL was arisen from 2005–

2007 in Sweden at the Uppsala University Hospital 

[49]. In this outbreak isolate was colonized and 

infected about 248 patients. The plasmid encoding 

CTX-M-15 contained no genes related to virulence 

but completely adapted the characteristics of its host 

ultimately have no fitness cost. But in comparison, 

E. coli received K. pneumoniae plasmid contained 

fitness cost. But it was unstable. The researchers 

concluded that, CTX-M-15 produced by K. 

pneumoniae plasmid ended in a strain with unique 

genetic framework but have the ability to cause 

outbreaks.  CC23 strains also contained plasmids 

that encode CTX-M-15 ESBLs [50]. 

RESISTANCE DUE TO CARBAPENAMASES 

Now-a-days, Carbapenems are becoming a last ray 

of light in the darkest era of antibiotic resistance 

against multi drug resistance strains of gram 

negative rods. These drugs of choice were 

introduced first time in 1980s [51]. The enzymes 

like carbapenamases which are active against few 

carbapenems and they have ability to dissociate 

carbapenems and some β-lactams. There are many 

classes of β-lactamases [52]. The antibiotics like 

carbapenems and penicillins are hydrolyze by all 

classes of enzymes. But in the case of 

cephalosporins, enzyme’s mode of action varies 

with class. The divalent cations addiction of 

enzymes for its proper functioning is responsible for 

their classification. The carbapenameses are 

classified into two groups metallo-carbapenemases 

which are zinc dependent (class B) and non-metallo-

carbapenamases which are zinc independent 

(classes of A, C and D) [53]. The attained class B 

MBLs consist of VIM, IMP groups along with latest 

evolving NDM groups are recognized in 

Enterobacteriaceae family [54]. The metallo β-

lactams which are broad in spectrum with reference 

to substrate and they have capability to hydrolyze 

whole β-lactam antibiotics that must contain 

carbapenems excluding monobactams [55]. The 

New Delhi metallo- β-lactamase NDM-1 is the most 

important clinically recognized carbapenemases 

which was first time observed in 2008 in E. coli and 

K. pneumoniae diagnosed patient who was coming 

back from India to Sweden [56]. The 

carbapenemases which are related to class A 

according to Ambler classification system have 

ability to dissociate all types of cephalosporins and 

aztreonam as well. The type of carbapenamaese 

which are active against cephalosporins of first 

generation,ceftriaxone,cefepime and cefotaxime are 

OXA. But it remains dormant against azytreonam 

and ceftazidime [57]. The high resistance enzyme 

Klebsiella pneumoniae carbapenemases KPC were 

evolve first time in Klebsiella pneumoniae in 1996 

[58]. Out of eleven KPC strains which are ranging 

from KPC-2 to KPC-12, KPC-2 is the most 

notorious strain. [59]. Outbreak of KPC-2 strain of 

Klebsiella pneumoniae in New York in 2004 has 

been reported [60]. The difference of one amino acid 

converted KPC-2 to KPC-3 and this strain was first 

time reported in 2000 to 2001 during the outbreak of 

Klebsiella pneumoniae in New York [61]. Another 

report of KPC-2 which was documented in 2005 

from France revealed that this strain of Klebsiella 

pneumoniae has been disseminated in the world 

[62]. The hydrolysis of almost all β-lactams 

especially of cephalothin, ampicillin, cephaloridine, 

nitrocefin and benzylpenicillin is the task of KPC 

related cephalosporins. The minute but countable 

hydrolyze activity of KPC was noticed against 

ceftazidime and cefoxitin which place them under 

the umbrella of broad dissociation pattern of 

antibiotics which must include β-lactam [63]. The 

types of plasmid encoding β-lactamases which are 

ACT-1, CMY-1, MOX-1, CMY-2, MOX-2, ACC-

1, DHA-2, MIR-1, FOX-5, CMY-12, ACT-3, 

CMY-8, LAT-1, DHA-3, FOX-1, LAT-2 and LAT-

2b belongs to class C also.  The oxacillinases 

(OXAs) are the most familier enzymes of β-

lactamases which are belong to class D, because its 

hydrolysis rate of isoxazolylpencillin oxacillin is 

much greater than benzylpenicillin [64]. Its sub 

group OXA-48 was diagnosed as the harbour in K. 

pneumoniae in 2003 in Turkey [65]. There are other 

supplemented types of carbapenemases. The 

enzyme like New Delhi metallo- β-lactamases 

(blaNMD) was diagnosed from bacterial infected 

patient of New Delhi, India [66]. The type 
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blaOXA48 was recognize in Turkey which was 

recover from K. pneumoniae bacterium [67]. The 

reasons for outbreaks of KPC is still confused.  Siu 

et al, found no association between virulence factors 

and KPC which is the interpretation of conjugation 

experiment between K2 KP with bla KPC gene. A 

study conducted in PIMS hospital Islamabad, 

Pakistan explored 30% cases of K. pneumoniae was 

the shelter of bla KPC-2 gene [68]. Which is one of 

the highest prevalence rate of this carbapenemase 

enzyme.  These resistant strains reaches to the extent 

of XDR and the action of caphalosporins, 

carbapenems, tobramycin, levofloxacin, piperacillin 

tazobactam and aztreonam found nill against these 

strains. The  enzymes of KPC are also resist  to other 

related antibiotics. Few studies reveal the co-

existance of blaKPC-2 and blaNDM-1 genes on the 

same clone of K. pneumoniae isolates. The 

availability of both irrelevant carbapenemases 

reveals the high resistance of isolates to large range 

of antibiotics especially carbapenem [69]. The 

prevalence of k. pneumoniae containing blaNDM-1  

gene was 32.5% in Asian countries. Then, further 

annual analysis revealed that the rate of K. 

pneumoniae producing bla NDM-1 is increasing day 

by day after 2010 [70]. Hence, KPC enzymes are 

also interlinked with other antibiotics resistance. In 

this current situation the partnership of these 

resistance strains with their virulence factors seem 

unapproachable. De Rosa et al. interpreted some 

interesting facts which will be difficult to follow in 

order to restrict the expansion of this bacterium. The 

bacterium has a tendency to fit in GIT especially in 

the absence of protective bacteria which is a source 

of broad spectrum antibiotics intake. The writers 

highlighted some factors that leads severity of this 

pathogen like patient risk factors, lack of infection 

control measures, hub of digestive tract and few 

treatment issues [71]. The writers recommended the 

solutions of pointed problems are less duration of 

patient in hospital, measures set up by infection 

control committees, intake of gentamicin with 

polymyxin in order to decontaminate the GIT and 

carbapenem secure policy [72-74].  A study duration 

between 2008 to 2012 claimed, there was not any 

combination of OXA-48 Klebsiella pneumoniae 

with capsular virulence factor [75, 76]. In a research, 

NDM-1 strain found more virulent strain and it also 

showed the link with K2 capsule which act as 

intrinsic virulence factor. The virulence level was 

checked by using murine sepsis model [77]. This 

study demands more researches because it seemed 

that the belonging of K2 capsule make it more 

virulence [78]. In contradiction of above study, the 

strain containing bla KPC-2 showed less virulence in 

Caenorhabditis elegans model. It displays not any 

relation of bla KPC-2 strain with any virulence factor 

[79]. Furthermore, another finding was obtained by 

study on Galleria mellonella model. The model 

shows the contrast results from patients. The model 

shows more mortality with KPC (-) as compared to 

KPC(+) [80]. Gharrah et al, found the association 

between ESBL production, non ESBL production 

and virulence factors of k. pneumoniae. He found 

the interlink of ESBL strain with biofilm formation, 

serum resistance and iss gene. The relation between 

non-ESBL production and hypermucoviscosity was 

also reported [81]. Another study is persuasive to 

some extent about correlation between virulence 

and resistance of Klebsiella pneumoniae. The 

presence of rmpA gene was recorded in two ESBL 

producing strains which were isolated from septic 

blood of neonates and these cases was mortal. The 

mortality may show the severity of disease because 

of the combination of both virulence and resistance 

[82]. The partnership between anti-microbial 

resistance and biofilm formation is synergistic to 

some extent in the nosocomial infection. Vuotto et 

al, claimed the presence of fimbrial adhesion genes 

which are responsible for biofilm formation in 

medical devices have a parallel relation with 

antibiotic resistance. This appears how the intrinsic 

resistance manipulate the severity of disease with 

the antibiotic resistance in hospital environment as 

a nosocomial pathogen. Another study exhibits the 

denial homogeneity between multi drug resistance 

and biofilm formation in nosocomial infection. 

Consequently, all the isolates were multi drug 

resistance but shows less level of biofilm formation. 

Hence proved, multi drug resistance is a key factor 

for nosocomial infection as compared to biofilm 

formation [83]. Deviated data for relation of 

virulence with resistance has been observed in 

hospital acquired infections. But, different studies 

illustrate the trend of resistance with virulence is 

abrupt. The light of some studies brighten the 

concept of correlation of resistance with virulence to 

some extent. The severity of disease with the 

combination of these two factors in some studies 

give a hint for more upcoming researches.  

Correlation of Bacterial Outer Membrane 

protein with Virulence 

The Gram negative bacterial outer membrane have 

some porins which are responsible for influx of 

hydrophilic substances like antibiotics, nutrients, 

ions and efflux of toxic materials from bacterium 

[84]. The outer membrane proteins can act as highly 

immunogenic candidate because it has ability to 

bind with C1 q and activate the classical pathway in 

antibody independent manner which can serve as 

vaccine development purpose. This vaccine will be 

helpful to prevent the lethargic challenges from the 
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similar strain of k. pneumoniae. Furthermore, the 

lipopolysaccharide component of cell membrane is 

independent of the activity of complement mediated 

lysis [85].  The most emergent ST 258 with its CG 

258 clonal group was studied in a study in order to 

distinguish the novel mutant forms. They found 95 

% and 86 % matched sequence with respect to OMP 

A and OMP 26. The researchers examined the 

sequence of OMPs like OMP A, OMP 26, OMP 36, 

OMP 37 and OMP 35. Out of two porins like OMP 

35 and OMP 36 of K. pneumoniae, OMP 36 

deficient strain with additional beta lactamases 

production leads to high level of carbapenem 

resistance [86]. The MDR strain is the major 

consequences of both OMP 35 and OMP 36 missing 

strain with ESBL production. The OMP 36 deficient 

strain shows high sensitivity to phagocytosis by 

neutrophils and evaluate Lethal Dose 50 in mouse 

model as compared to parental strain. This scenario 

revealed that the OMP 36 lacking strain favors high 

antimicrobial resistance, increase phagocytic 

activity by neutrophils and decrease virulence [87].  

This same result was also observed in C. elegans 

model which is less virulence because of missing of 

both important outer membrane protein [88]. The 

genotyping of MDR isolates of Klebsiella 

pneumoniae  which are recovered from ERIC-PCR 

resulted with fact of association of virulence and 

resistance. But, RAPD- PCR analysis of same study 

revealed that resistance is not have any association 

with the virulence [89].  

The strains which are resistance to 

choloroamphenicol, cefoxitin and quinolones 

showed minimum adhesion capacity with Int-407.  

These strains claimed highest mutation capability 

[90]. The mutation of the porins could ultimately 

results into permeability of membrane which might 

be consequent to resistance of cefoxitin. This 

scenario elaborate that these proteins could be allow 

the bacteria to bind with surfaces. In order to suffer 

with antibiotic, the bacterium must be enthusiastic 

to deprive of certain structural capabilities of these 

membrane protiens. The shadow of these findings 

casts the impact of antibiotic resistance 

collaboration with mutation. 

Serum resistance is the virulence property of an 

organism by which they escape the lytic action of 

complement system of the normal serum [91]. 

Studies have shown that strains of Klebsiella 

producing extended-spectrum beta-lactamases are 

significantly more invasive with more fimbrial 

adhesions and more resistant to the normal human 

serum bactericidal effect than nonESBL-producing 

strains [92]. 

 

Correlation between Virulence and Efflux 

Pumps  

The genome house of K. pneumoniae construct with 

efflux system that exports antibiotics and substances 

such as detergents as well as dyes [93]. The 

resistance to antibiotics ranges from quinolones 

especially ciprofloxacin, nalidixic acid and some 

antibiotics like chloramphenicol, cefoxitin, 

erythromycin and tigecyclin are functionalized by 

Klebsiella pneumoniae, due to decoding of its 

multidrug efflux system of AcrAB. This system 

recognized as show resistance against few 

antimicrobial peptides in lung [94]. The C. elegans 

model exhibit the over expression of Acr AB punp 

has correlation with virulence level [95]. Recently, 

OqxAB, efflux system showed resistance to 

cefoxitin, ciprofloxacin, chloramphenicol and 

nalidixic acid [96]. This is belonging to locus rarA-

oqxABR, in which RarA acts as transcriptional 

regulator of oqxAB and oqxAB and rarA 

transcriptionally repress by OqxR [97]. The latter 

repressor is mutated which is the reason for 

multidrug resistance and the enhanced virulence 

level of the strain notice in C. elegans model [98]. 

The RND efflux pump type, resistance nodulation 

cell division KexD, from K. pneumoniae exhibit 

their role to multi drug resistance, but its virulence 

role has not been known [99]. Likely, pumps like 

EefABC, colonize in the digestive tract of murine 

but not linked with antimicrobial resistance. 

Furthermore, (MATE) KetM which is multi drug 

and toxic extrusion was not show correlation with 

resistance to antibiotics [100]. 

RESISTANCE DUE TO OTHER 

ANTIBIOTICS 

Resistance against Colistin 

The pharmokinatics of the colistin is interaction 

with lipid Aand disruption of outer membrane. The 

LPS modification by 4-amino-4-deoxy-L-arabinose 

in lipid A resulted into resisance against colistin in 

K. pneumoniae. The association of this modification 

with operon, pbgPE, and it is progressed by PhoPO 

and PmrAB. The activation due to insertion of 

PhoO/PhoP, regulator MgrB, proposed as colistin 

resistance determinant [101]. Some strains show the 

colistin resistance pattern due to three genes such as 

phoO, ccrAB and mgrB, belongs to regulatory 

system of two components: ccrAB [102]. According 

to Choi and Ko, colistin resistance due to K. 

pneumoniae strain, ST23, leads to defects in 

hypermucoviscous and in vitro fitness, CPS 

production, and serum resistance [103]. In recent, 

colistin is characterized by MCR-1, which is 

phosphor ethanolamine transferase, plasmid-

encoded. Although this enzyme is occasional in K. 

pneumoniae and its virulence role is unclear [104].  
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Resistance against Fluoroquinolones 

The resistance phenomenon in fluoroquinolones are 

the outcome of the plasmid mediated mutation 

because of alteration in parC (topoisomerase IV) 

and gyrA (gyrase) genes region “QRDRs” that is 

quinolones-resistance determinant region, alteration 

in permeability that leads to porin loss and due to 

overexpression of efflux that resulted into scanty 

uptake of quinolones [105].  A study in Taiwan 

documented as, qnr genes are 39% prevalent in 

strains of K. pneumoniae which was isolated from 

blood of patients [106]. The strong association 

between fitness and resistance of fluoroquinolones 

has been suggested [107]. Hence, it seems that this 

phenomenon has been associated with elevated 

efflux pump activity as compared to substitutions of 

amino acid in resistance regions of quinolones. 

WHOLE GENOME SEQUENCING 

CONTRIBUTION 

The whole genome sequencing is a tool that allows 

bacterial strains characterization in depth and 

facilitate comparison of nosocomial pathogens and 

outbreaks. This technique is still in the stream of 

further exploration but it will give great contribution 

in future for proper understanding of K. pneumoniae 

strains epidemiology and virulence. Due to this, 

BIGSdb-Kp, database have been developed as a 

freely accessible tool. The published data of few 

studies demonstrated the usage of good sequencing 

technique, high-throughput, especially to achieve 

genomes of CC258 strain, which is MDR and CC23 

endemic hypervirulent strain. Consequently, CC258 

was solely devoid from virulence genes, while 

strains that are hypervirulent and MDR are found as 

extremely non-overlapping [108]. A study showed 

that intestinal tract of human is the hub of CC23 

isolates. Furthermore, virulence plasmid homologs, 

which is mapped for aerobactin, two siderophores, 

salmochelin and RmpA were found in entire hvKP. 

They have few auxiliary siderophore including 

colibactin, microcin E492 that are associated with 

ICE, and yersiniabactin. Such kind of strains that 

have astounding tendency for genomic plasticity, 

need to be address by addition/subtraction of 

segments of genomes in a recombination of events 

[109, 110].   

CONCLUSION 

The synthesis of enzymes like carbapenemases, 

cephalosporins and especially extended-spectrum β-

lactamases are the usual phenomena of resistance in 

Klebsiella pneumoniae. The β-lactams are 

enormously used in therapeutics in humans in recent 

years. The plasmid that contains genes coding of 

these enzymes, also contain virulence factors genes. 

Hence, the appreciation of resistance process is 

difficult over bacterial fitness cost. The genes 

coding for ESBL (TEM and SHV types) were 

studied on virulence plasmid. The bacteria enhance 

its virulence level by possession of such plasmids. 

Now a day, epidemiology has converted to ESBLs, 

especially CTX-M type and dissemination of KPC, 

K. pneumoniae carbapenemases. But, such kind of 

plasmids that carry these enzymes do not come 

under the category of fitness but these considered as 

less virulent. Currently, complexity in clones of 

multi-drug resistance MDR and hypervirulent hvKP 

are not overlapping. Hopefully, hvKP stability will 

not maintain by MDR plasmid, because move 

towards the super bug emergence. The lots of 

researches need to be done to completely understand 

the association between reistance and virulence. 

Particularly, scanty informations are available on 

acquisition of bacterial mechanism for antibiotics 

and fitness cost. 
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