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ABSTRACT 

In the relatively new but fast-evolving field of nanomedicine and nanotransport systems, different nanoscale 

molecules are used to deliver therapeutic agents to precisely targeted sites or potentially function as diagnostic 

tools. In present review provides up-to-date accurate information on the latest advancements in nanomedicine and 

nanotechnology DDS through a complete review of nanomaterials discoveries. The potential and difficulties of 

using nanomedicine to deliver medications from synthetic or natural sources to their intended clinical purposes 

are also covered. Additionally, we have exclusive data on perspectives and trends in nanomedicine.  
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INTRODUCTION 

Nanotechnology-based drug delivery structures 

have significantly increased drug delivery due to 

drug pharmacokinetic modifications, increased drug 

duration in the bloodstream, reduced toxicity, and 

increased drug half-life [1]. Magnetic nanoparticles, 

which constitute a large element of nanomaterials, 

can revolutionize prognosis and clinical treatment 

due to their special properties, superparamagnetic 

momentum, magnetic resonance, and tremendous 

natural interactions at the molecular and cellular 

levels [2]. MNPs, an integral product of 

nanotechnology, have facilitated a considerable 

range of prognostic and therapeutic properties in 

diseases that are unstable to human life, such as 

cancer and neurological and coronary heart diseases. 

MNPs, which are often used in the centric delivery 

of therapeutics, are basically entirely based on a 

targeted magnetic drug that acts through magnetic 

absorption of specific problems or has a strong 

ligand-receptor interaction. MNPs have a very 

critical feature due to the reality of the possibility of 

far-reaching manipulation of therapeutic agents 

when moving particles into the target tissue, and 

therefore they are recognized as magnetically 

focused carriers. The first-class magnetic houses, 

supersaturation and magnetic susceptibilities of 

magnetic nanoparticles, resulting from their herbal 

magnetic properties, represent the only risk for use. 

On the other hand, attractive and long-lasting 

medicinal residences can be created for these 

particles due to the potential of using a number of 

base coatings and the pharmacokinetic results and 

toxicity of magnetic nanoparticles delivered through 

human interactions with cells or organic proteins. 

can be avoided, leading to accelerated 

biocompatibility of magnetic nanoparticles. 

Magnetic nanoparticles have been seen in 

biomedical and industrial purposes due to their 

biocompatibility, easy soil modification, and 

magnetic properties. Magnetic nanoparticles can be 

used in extraordinary methods. The tendency to 

magnetic fields through magnetic nanoparticles is 

an attribute that leads to new achievements, so 

tablets associated with these particles in physics are 

focused on the use of magnetic discipline. 

Therefore, magnetic nanoparticles are the answer to 

transport drugs to preferred areas of the body [3].  
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MAGNETIC PARTICLES (MNP) 

Magnetic particles that correspond to their unique 

magnetism exist in the structure of individual 

nanoparticles or clusters of micro-nanoparticles. 

Their use in different areas depends on the type of 

each individual nanoparticle. The composition, size, 

and synthesis process of MNPs vary in their 

applications, however, superparamagnetic, Ferro, 

and free particles can be used for a variety of 

targeted drug delivery functions. MNPs are strongly 

affected by the application of an external magnetic 

object due to the magnetic second of the 

neighborhood unit and the nature of the fields, so 

that when the external magnetic discipline 

disappears, they behave as inactive particles. Single-

domain and superparamagnetic are factors of 

magnetic nanoparticles that underlie many of their 

positive factors [4, 5]. 

 

 

COMPONENTS  

Magnetic nanoparticle consists of the following 

parts: 1) A magnetic core 2) Protective coating 3) 

Organic linker 4) Active molecule  

Magnetic Core   

At the center is the magnetic core, usually, 

properties of these particles depend upon the 

magnetic core. For medical applications, we use 

ferromagnetic materials because they are strongly 

attracted by a magnet as well as it shows 

superparamagnetism at room temperature.  

Ferromagnetic Materials  

These materials are strongly attracted by the magnet 

e.g. Iron, cobalt, and nickel further reduced, 

particles become superparamagnetic means they 

become magnetic in the presence of an external 

magnet but revert to a nonmagnetic state when the 

external magnet is removed giving magnetic 

nanoparticles unique advantage of working in 

biological environments [6].  

 
Figure 1. schematic presentation of different biomedical applications of magnetic nanoparticles. 

 
Figure 2. Components of magnetic nanoparticles 
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PREPARATION TECHNIQUES OF 

MAGNETIC NANOPARTICLES 

The process to be optimized early in the synthesis, 

as even a small version of the entire method can 

raise a radical change in the desired result. 

Therefore, the chemical and bodily homes of 

synthesized nanoparticles prefer to be tightly 

controlled to be positively and profitably utilized in 

biomedical applications. There are special methods 

of synthesis of magnetic nanoparticles [7-9].  

Co-precipitation 

The phrase "co-precipitating" ability is a technique 

in which one or more surrounding fabrics—

generally soluble under those conditions—

precipitate through nucleation. Nanomaterials for 

precipitation are commonly used for more than a 

few organic functions due to the reality of the basic 

practical method, much less dangerous (pre-cursors) 

required. With the aid of a precipitating agent, co-

precipitation is typically conducted with preferred 

salts and a base, typically in an aqueous media, with 

or without the goal of producing insoluble stable 

particles. This technique allows for the production 

of magnetic nanoparticles at either room 

temperature or at room temperature. high 

temperature resulting in an unbalanced yield, 

amount, and shape [10]. The kind of salts employed, 

the pH of the solution, the ion ratio, the ionic 

strength of the medium, the reaction temperature, 

and numerous reaction circumstances, such as the 

rate of addition of the primary solution and the rate 

of mixing, all affect the size and form of the 

synthesized nanoparticles. For profitable 

precipitation, the pH must be in the range of 8 to 14. 

[11]  

 

 
 

Figure 3. The following are the procedures for making ferrite nanoparticles by coprecipitation: Precipitation, 

precipitates after washing, drying at 80 °C, sintering at 1100 °C, and grinding of the finished product are shown 

in (A), (B), (C), and (D), respectively. 

 

 
 

Figure 4. Illustration of (NiFe2O4/Fe2O3) nanocomposite synthesis via hydrothermal method: (A) addition of 

precursors(B) magnetic stirring while adding NaOH (C) autoclaving the mixture for 20 hours at 180 °C, (D) 

filtering, (E) drying at 100 °C, and (F) annealing in air for two hours at 400–800 °C, followed by comminution. 
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Hydro-thermal 

Hydrothermal is considered the most popular 

strategy to produce inorganic nanoparticles, 

especially metals and oxides. Typically, wet-

chemical techniques for crystallisation in a sealed 

vessel make up the hydrothermal method. The 

aqueous solution is kept in the vessel at a high stress 

level and high temperature (130–250 °C) (0.3–4 

MPa). Large-diameter NPs are frequently produced 

using the hydrothermal method [12,13] 

Nanomaterial tuning from a few nanometers to 

hundreds of nanometers is possible using the 

hydrothermal technique. In general, the awareness 

of the precursors, along with the reaction time and 

response temperature, lead to the dominance of the 

synthesised nanoparticle's size and dispersion 

[14,15,16]. 

CHARACTERIZATION  

Following are some most commonly used analytical 

techniques for characterization:  

Transmission Electron Microscopy  

Magnetic nanoparticles are characterized for its size 

by TEM. Transmission electron microscopy (TEM) 

is used in the determination of particle core size. It 

reports the total particle size of the core. It provides 

details on the size distribution and the shape. 

However, this technique needs an analysis by image 

treatment, and must be performed on a statistically 

significant large number of particles. High-

resolution transmission electron microscopy 

(HRTEM) gives access to the atomic setting [18,19]. 

On a Formvar-coated copper TEM grid (300 mesh 

size), a drop of an aqueous dispersion of (magnetic 

nanoparticles) is applied, and the grid is then left to 

air-dry. After that electron beam is passed through it 

and the image of the particles can be seen on 

fluorescent screen.  

Scanning Electron Microscopy  

Scanning electron microscopy (SEM) used for the 

determination of morphology and size distribution 

of particles in the scales of micro to Nano range 

[20]. 

FUNCTIONALIZATION OF MNPs 

Surface change or functionalization is a 

fundamental aspect of magnetic nanoparticle 

(MNP) synthesis and application. Functionalized 

MNPs have been the center of attention in 

biomedical applications. The major purposes of 

surface change of MNPs are (1) to stop 

agglomeration, (2) to enhance floor catalytic 

activity, (3) to improve physicochemical and 

mechanical properties, and four to expand solubility 

and biocompatibility [21]. The functionalization 

process that gives MNPs their typical morphology 

can be one of the 4 kinds of core-shell structure, 

matrix dispersed structure, Janus structure, or shell-

core-shell structure [22, 23]. Three mechanisms 

used for functionalization are ligand addition, 

exchange, and encapsulation [24, 25]. 

Encapsulation, it is an excellent method in terms of 

available coating materials - when you consider that 

every natural fabric (polymers, surfactants) and 

inorganic material (silica, carbon, metal, steel 

oxides) can be used for encapsulation [26, 27]. PVA, 

Dextran, chitosan, alginate, polyethylene glycol 

(PEG), commonly used for functionalization 

method [28].  

 
                        Figure 6.   Various characterization parameters of magnetic nanoparticles 
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Figure 7. Functionalized magnetic nanoparticles. 

 

EFFECTIVE PARAMETERS IN THE DESIGN 

OF MAGNETIC NANOPARTICLES 

The design and synthesis of nanoparticles require 

knowledge of the principles of the nature of 

nanostructures [29, 30]. These particles are used as 

a drug that moves to a specific tissue and is not 

harmful to the patient or as a contrast agent in 

medical imaging [31]. In this section, we examine 

the physiological barriers that MNP face and the 

physical changes that are applied to improve the 

performance of MNPs in the body [32]. The 

important physical and physiological parameters in 

the design of nanoparticles with biological 

applications. 

Extracellular Barriers 

High ionic energy and solubility heterogeneity in 

nanoparticles cause them to collect in the blood as 

they enter the bloodstream, eventually changing 

their magnetic properties and arresting them. [33, 

34]. In addition to the aforementioned, nanoparticles 

in the vascular environment are constrained by 

factors such the particle size to target tissue 

anatomy. When it affects organs like the brain and 

kidneys, the issue is worse. For instance, powerful 

cell-to-cell junctions found in the blood-brain 

barrier (BBB) restrict small-sized particles and 

appropriate physicochemical sites from passing past 

the blood-brain barrier in the brain, which limits the 

charge of pinocytosis [35].  

Intra-cellular Barriers 

Intracellular constraints act as a barrier to the entry 

of drug-carrying particles as well as extracellular 

barriers, which are not just restricted to the 

extracellular area [36]. When a nanoparticle is 

connected to the target membrane, it is often 

removed by ligand-dependent endocytosis and then 

disassociated from its function inside the cell by 

acidifying interactions in the endosome chamber, 

however most of these endosomes proceed towards 

the lysosome [37].  

STAGES OF ACTIVITY OF MAGNETIC 

CARRIERS   

Upload the Drug 

Drug binding is by means of covalent approach with 

fission and reconnection capability-or by using 

physical strategies such as hydrophobic interactions 

that expand specificity in drug delivery [38, 39]. 

Proper design of nanoparticles when loaded with a 

precise drug can be used as a greatest drug delivery 

system; this reduces non-specific cellular 

interactions, controls the secretion of therapeutic 

agent, the capacity to take delivery of a range of 

loaded capsules or use, and makes nanoparticles 

feasible in cellphone imaging and tracking [40, 41].  
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BODY ENTERING AND APPROACHING 

THE TISSUE 

The drug-carrier complex formed in the form of 

Ferro fluid enters the body with the aid of 

intravenous or arterial injection [42]. With the help 

of an exterior magnetic area (produced from 

everlasting magnets) and a gradient above the field, 

the drug can be guided and centred at the tumor site 

or different goal tissues are furnished [43]. 

Targeting  

The focused on of these particles is not specific and 

is frequently completed via non-specific methods 

such as tissue-specific pore dimension or more 

suitable permeability and retention effect (EPR) in 

tumor tissues [44, 45].  

Passive Targeting 

This technique is quite effective at extending the 

blood half-life of MNPs and is applicable to a wide 

range of situations, including tumours, unusual 

structures, specific vascular damage, inflammation, 

and contamination. The phenomenon of greater 

penetration and retention impact serves as the 

foundation for passive targeting in its entirety 

(EPR). This process, on the one hand, facilitates the 

departure and accumulation of macromolecules and 

nanoparticles in the tissue by increasing their 

leakage from the arteries [46]. Factors including 

capillary insufficiency, blood pressure, and 

lymphatic drainage affect the stage of this 

aggregation. This targeting and aggregation of 

inactivated nanoparticles with sizes between 1 and 

10 nm occurs. The spontaneous clearance of the 

reticuloendothelial machinery (RES), which is made 

up of bone marrow cells, blood monocytes, and 

tissue macrophages, presents another opportunity 

for passive targeting. Delivering contrast chemicals 

for imaging or drug delivery vectors to the target 

tissue is made possible by the removal of MNPs by 

phagocytic cells [47] 

Active Targeting  

Ligands with robust affinity on the surface of the 

particles to specific molecules on the surface of the 

patient's phone are used to obtain the particles in the 

target tissue. In malignant tissues like tumours, 

antigen-antibody or receptor-ligand interaction 

takes place after particle buildup caused by EPR 

[48]. Proteins, peptides, aptamers, and other tiny 

molecules can all function as ligands. In conditions 

like breast cancer, malignant melanoma, and 

squamous cell carcinoma, the substance is utilised 

to distribute MNPs to a wide range of neoplastic 

tissues, or the F3 peptide, which binds to tumour 

endothelium nuclei. Fast peptides and small 

compounds, as opposed to monoclonal antibodies, 

will boost the polyvalent binding pathway's affinity 

for binding [49].  

CYTOTOXICITY OF MAGNETIC 

NANOPARTICLES 

The ability of positive chemicals or mediator cells 

to damage living cells is referred to as telephone 

cytotoxicity. Cytotoxicity is a necessary issue, as the 

destruction of healthful living cells round the wound 

will adversely have an effect on the restoration 

process. Cytotoxicity is the universal excellent of 

being poisonous to cells and is no longer affected 

with the aid of chemical stimuli, 

physical/environmental conditions (exposure to 

temperature, excessive pressures, or radiation) or 

exposure to different cells (e.g., NK or T cells) [51, 

52].

 
Figure 8. Passive targeting versus active targeting strategies for anticancer drug delivering system. 
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Chemical toxicity can occur in many ways; 

however, it has generally been thought to be divided 

into two main classes: disruption of specific 

biomolecular ambitions or pathways (eg, enzyme 

activation/inhibition and receptor agonist/antagonist 

effects) or damage to cellular machinery that can 

lead to cell phone stress and cytotoxicity [ 53,54]. 

By treating cells with a cytotoxic compound, it can 

motivate quite a number of telephone fates. Using a 

cytotoxic compound, healthy residing cells can be 

caused to bear both necrosis (accidental cellphone 

death) and apoptosis (programmed cell death) [55, 

56]. By analyzing the extent of cancer cell 

cytotoxicity, anticancer drugs can inhibit the 

proliferation of target cells, either by scrambling 

their genetic material or by blocking the nutrients 

the cells want to live on [57-60] 

CONCLUSION  

Magnetic nanoparticles overcome the problem of 

drug delivery, by addressing the problems of 

toxicity, localization, and treatments for diseases 

such as (CF)cystic fibrosis, and tumors. But there 

are only a few clinical trials. This field is still 

emerging and has a long way to go.  
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